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Abstract: In recent decades, networked smart devices and cutting-edge technology have been ex-

ploited in many applications for the improvement of agriculture. The deployment of smart sensors 

and intelligent farming techniques supports real-time information gathering for the agriculture sec-

tor and decreases the burden on farmers. Many solutions have been presented to automate the ag-

riculture system using IoT networks; however, the identification of redundant data traffic is one of 

the most significant research problems. Additionally, farmers do not obtain the information they 

need in time, such as data on water pressure and soil conditions. Thus, these solutions consequently 

reduce the production rates and increase costs for farmers. Moreover, controlling all agricultural 

operations in a controlled manner should also be considered in developing intelligent solutions. 

Therefore, this study proposes a framework for a system that combines fog computing with smart 

farming and effectively controls network traffic. Firstly, the proposed framework efficiently moni-

tors redundant information and avoids the inefficient use of communication bandwidth. It also con-

trols the number of re-transmissions in the case of malicious actions and efficiently utilizes the net-

work’s resources. Second, a trustworthy chain is built between agricultural sensors by utilizing the 

fog nodes to address security issues and increase reliability by preventing malicious communica-

tion. Through extensive simulation-based experiments, the proposed framework revealed an im-

proved performance for energy efficiency, security, and network connectivity in comparison to 

other related works. 
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1. Introduction 

Today, the Internet and the Internet of Things (IoT) dominate nearly everyone’s life. 

IoT is a paradigm that connects things, people, or networks and allows them to process 

and react precisely to any kind of physical or virtual communication [1–3]. IoT has appli-

cations in every industry, including healthcare, agriculture, and home controllers. It effi-

ciently provides user-required services by utilizing Internet connectivity, sensors, and a 

variety of other technologies and protocols for collecting and analyzing data [4–6]. The 

Internet of Things helps companies to automate operations and improve service delivery 

using Internet technologies and cloud-based data transmission. For the various industries 

it is utilized in, IoT does not permit the adoption of universal software architecture; in-

stead, it must be modified to meet user requirements [7–9]. Nowadays, smart agriculture 

is more important than ever because of the expanding global population and rising food 
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demand. In this context, smart technologies have become a crucial route to cutting-edge 

agricultural practices [10–12]. There are many different applications, protocols, and pro-

totypes in the field of agricultural land. 

Furthermore, several IoT policies and standards have been developed in the agricul-

ture sector in numerous nations and organizations worldwide. Due to the limited bound-

aries of IoT devices, sensors, and actuators, a detailed study of IoT in the context of agri-

culture is required to understand the present state of research [13–15]. Throughout his-

tory, the agricultural industry has played a significant role in human cultures worldwide. 

Machine learning is a subset of artificial intelligence widely explored for identifying ma-

licious attacks. Such a technique also focuses on making the system smart so that addi-

tional overhead can be reduced on the IoT devices [16,17]. The organization and practices 

of modern agriculture are significantly impacted by the development of information and 

communication technologies (ICTs). Despite the benefits of this evolution, several security 

concerns have the potential to negatively affect the agriculture sector [18–20]. Since farm-

ers could sustain a significant financial and personal loss in the event of a data breach, 

data integrity and confidentiality are critical security concerns within the agricultural sec-

tor [21–23]. In this work, the main contributions are as follows: 

i. It provides a strategy to effectively manage IoT resources, identify the redundant 

nodes that are collecting the same data and forbid using them. Such a scheme is effi-

cient in utilizing the resources of the network and prolonging the system life cycle. 

ii. It develops intelligent methods using distributed machine learning to predict routing 

decisions for the selection of optimal forwarders with increasing data delivery and 

load balancing. 

iii. Another aspect of the proposed framework is the usage of a fog system to establish a 

secure chain in the presence of unidentified and faulty nodes by establishing a relia-

ble group of nodes. 

iv. We verified the proposed framework with other work and the results demonstrate 

enhanced performance for various network parameters. 

This paper is further organized as follows: the discussion for related studies is pre-

sented in Section 2. Section 3 presents the detail of the proposed framework. In Section 4, 

the simulation environment is briefly explained. Section 5 presents the results and discus-

sion of the experiments. Lastly, the conclusion is in Section 6. 

2. Related Work 

The smart city emerged as a concept with the fast growth of dependable information 

and communication models and the combination of sensor technologies [24–26]. Modern 

fog computing technology develops intelligent networks combining IoT networks and 

cloud platforms. Fog computing is applied at the network edge, and they perform a sig-

nificant number of tasks in terms of processing, storage, and communication. Networking 

devices such as routers, gateways, etc., make up fog computing. Compared to sensor 

nodes, these devices have more processing, transmission, and storage capabilities [27,28]. 

In an IoT system, fog nodes received data from sensors and are further forwarded for 

high-cost processing with the support of data centers. A smart city promotes sustainability 

by utilizing various sensors to collect information from the environment while providing 

improved social facilities, transportation, and accessibility. The gathered information can 

then be utilized to manage urban infrastructure, including water supply, food services, 

environmental monitoring, and traffic congestion [29–31]. Smart agriculture is based on 

the IoT with future generation networks and is expected to benefit from the intelligently 

developed methodologies. The objectives of this strategy are to preserve water resources, 

lessen soil erosion, and improve soil quality [32,33]. An effective and scalable protocol for 

the remote monitoring and decision making of farms in rural areas is named the CL-IoT 

protocol, and it was proposed to focus on the requirements for smart farming applications 

[34]. To decrease network communication delay, latency, and energy consumption, cross-



Sensors 2022, 22, x FOR PEER REVIEW 3 of 14 
 

 

layer-based clustering, and routing algorithms were developed. The cluster head (CH) 

selection method based on cross-layers has been proposed as a means of solving the en-

ergy efficiency issue for resource constraint networks. Each sensor’s physical, medium 

access control (MAC), and network layer parameters were analyzed and chosen as the 

optimal CH for effective data transfer. The algorithm with a novel probabilistic decision 

rule that was inspired by nature is proposed and serves as a fitness function to choose the 

best path for data transfer. To choose the cluster head, a hybrid artificial neural network 

and decision tree method were built with the cognitive radio [35]. The base station receives 

more packets and collects more data from the typical sensor nodes as the residual energy 

level rises. The on-demand routing protocol is designed to hold data in local storage for 

retransmission during link failure to achieve reliable data transfer. Performance metrics 

for the proposed technique include throughput, packet drop rate, packet delivery ratio, 

normalized overhead, and residual energy. The effectiveness of the proposed strategy was 

compared to a cluster-based data aggregation scheme. A novel intelligent routing protocol 

was proposed in [36] to increase the network lifetime and offer energy efficiency in the 

routing process, which is used to deliver data to the irrigation system. The protocol is 

known as terrain-based routing using fuzzy rules for precision agriculture and it uses 

fuzzy rules to provide a revolutionary intelligent energy-efficient routing scheme. The 

routing decisions were made using the fuzzy inference method described in this work. 

The equalized cluster head election routing protocol and region-based routing are two 

routing algorithms that were constructed and compared with the system. The experi-

mental findings demonstrate that the suggested algorithm outperforms the other availa-

ble algorithms. For an Agriculture Internet of Things (AG-IoT) network, the authors pro-

posed a supervised machine learning multipath and administrative-distance-based load 

balancing algorithm [37]. The proposed algorithm, also known as AI-enabled multi-hop 

and administrative-distance-based opportunistic routing (MHADBOR), processes the col-

lected data from source to destination using the network’s multi-hop count and adminis-

trative-distance-based communication infrastructure. In addition, the authors frequently 

used CHs, microbase, and macrobase stations in the network to efficiently manage the 

deployed network traffic in a communication environment without congestion. In [38], 

the authors proposed an optimization of resource utilization in smart agriculture systems 

using IoT (SMAIoT) that can monitor several low-cost IoT sensor types. This framework 

gathers information from the soil, air, water, and insects and uses them to produce suita-

ble decisions. The innovative aspect of the proposed framework is the scientific automa-

tion of functions such as irrigation, fertigation, pest detection, and pesticide spraying with 

efficient productivity. In [39], the authors provide an inter planetary file system (IPFS) 

storage for protecting agricultural sampling data based on the double-blockchain method 

for IoT networks. It stores the content of the sampled data using the IPFS network, and 

the proposed system can obtain the entire data segment using an oracle technique. Then, 

the authors developed a consortium blockchain, Agricultural Sample Data Chain (ASDC) 

by using Ethereum technology, and enhanced the Merkle Patricia Trie (MPT)-based ac-

counts for all categories of sampled data. To retain a public record in the case of malicious 

attacks, block hashes are generated and uploaded on Ethereum’s main chain after storing 

the data in ASDC blocks. 

Limitations of the Existing Schemes 

The summary of relevant studies shows that the IoT has grown significantly in cre-

ating and developing smart agriculture systems. It aids the farmers in monitoring soil 

conditions and water supply and increases productivity with the management of costs. It 

gathers the agricultural data and sends them to cloud databases to take the necessary ac-

tions accordingly. Numerous solutions have recently been proposed to deal with intelli-

gent data monitoring with improved latency using machine learning techniques. How-

ever, many of the existing systems do not make it apparent how different connections are 

https://www.sciencedirect.com/topics/computer-science/ethereum
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handled when there are redundant data. Moreover, efficient load balancing with the col-

laboration of mobile sensors is another significant research challenge [40,41]. Although 

many solutions have offered security for remote monitoring, this has been at the cost of 

computation and complexity. As a result, we need a framework to handle the timely sup-

ply of monitoring data using some smart and intelligent behaviors. 

3. Material and Methods 

This section presents a detailed discussion of the proposed framework with the sys-

tem model. Additionally, its algorithm and developed components are explained. 

3.1. System Model and Background of the Proposed Framework 

The system model consists of sensors, fog nodes, and the sink node. They are de-

ployed at random positions and the sink node is mobile. The fog nodes are considered 

more intelligent and have sufficient resources as compared to ordinary sensors. The mo-

bile sink has a direct association with cloud systems. Initially, IoT sensors are arranged in 

an undirected graph 𝐺  with finite vertices  𝑁 and edges 𝐸 . Each node has enough 

memory to hold and maintain its neighbors’ information. Similarly, neighbors in the fog 

system’s proximity are arranged in the form list based on a particular score. Fog systems 

not only aggregate the agricultural data for transmission towards the sink node but also 

offer a security layer among sensors and cloud services. Each node has a prefixed trans-

mission range, and in case the sink node is far away from it, the proposed framework 

adopts a multi-hop forwarding decision. We show the scenario for the proposed frame-

work in Figure 1. A robust routing strategy was built with the identification of the redun-

dant nodes, and agricultural sensors are installed in the field to sense the various situa-

tions. In the case of redundant nodes, such information is not permitted for transmission. 

Later, fog layers are made up of numerous fog nodes to initiate communication with sink 

nodes. Agriculture users may simply obtain the data from their smart devices with the 

support of cloud platforms. Our proposed framework also ensures data privacy and se-

curity in an unpredictable environment 

 

 

 

 

 

 

Figure 1. Scenario for fog-based IoT agricultural system. 

Figure 2 depicts the block diagram of the proposed framework. It is comprised of 

three sub-blocks, i.e., network structure, machine learning system, and fog-based secured 

communication. Firstly, sensors, actuators, gateways, and other communication devices 

initialized themselves for sensing and forwarding agricultural data. The sensors continu-

ously record environmental information, which is then sent to sink nodes via local coor-

dinators or gateways. Second, a machine learning-based technique was created to reduce 

the communication overheads of the sensor nodes. Finally, the proposed system adopts 

the distributed regression function to assess the various attributes of the system and 

achieves efficient node management [42]. Moreover, the machine learning approach not 

only balances the load over the multiple routes, but the proposed framework can also 

identify the redundant nodes. Duplicate data are therefore prohibited from entering in 
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proximity to fog nodes. In the end, a fog-based secured scheme is developed with the 

intelligence of fog nodes and cryptographic techniques. Fog nodes perform dual function-

alities for communication with both the IoT system and cloud platform. This validates the 

authenticity of incoming packets, and accordingly, appropriate actions are taken. In the 

case of authorized nodes, they are allowed to send the data towards the cloud system or 

the request packets are dropped by the fog nodes. The information is recorded in the table 

about false messages and non-authentic devices. 
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Figure 2. Block diagram of the proposed methodology. 

3.2. Machine Learning-Based Distributed Regressional Analysis 

Based on the undirected graph, the proposed framework identifies the initial and 

temporary routes 𝑅( 𝑟1, 𝑟2, … … , 𝑟𝑛). The selected routes are based on the distance factor 

and each node maintains its neighbor table in a controlled manner. By exploring the neigh-

bor table, each node formulates a route to the sink node for data transmission. To attain 

an efficient routing scheme with balances the load and bandwidth utilization, the pro-

posed framework initiates the nodes management activity on the routes 𝑟𝑖. Let us con-

sider that 𝑁𝑖 has a data 𝐷𝑖  to transmit to the sink node. Then, the proposed framework 

first identified the overlapping nodes that lay in the same transmission range. If any such 

nodes exist, then set their flag’s value in the routing table. The flag value indicates the 

forwarding status of the nodes. Let us suppose that 𝐷𝑡  is the distance threshold of the 

node 𝑁𝐷𝑠, and 𝑟 is the predefined radius. To determine the overlapping nodes, the pro-

posed framework exploits the search zone candidate nodes 𝐶𝑁 based on the 𝐷𝑡  and 𝑟, as 

given below 

𝑁𝐷𝑠 ( 𝐶𝑁 , 𝐷𝑡) ≤ 𝑟 (1) 

After determining the candidate nodes, the proposed framework updates the routing 

table of source node 𝑖 with the latest statistical values of neighbors. Table 1 describes the 

format of the routing table. It comprised node identity, transmission power, flag value, 
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computing score, and distance. The node identity which is one byte long is unique. The 

next field is one byte long and contains the value of preset transmission power. The flag 

field is just a Boolean parameter to indicate whether the node can be silent or not, and it 

is one bit long. Finally, the scoring factor is two bytes long and depends on the captured 

information about the nodes. In the end, the distance is 1 byte long and contains infor-

mation about the space toward the fog system. 

Table 1. Format of a routing table. 

1 Byte 1 Byte 1 Bit 2 Bytes 1 Byte 

Node identity, 
𝑖𝑑 

Transmission 

power 𝑡𝑥  
Flag value, 𝑓𝑖  Score, 𝑠𝑐𝑖  

Distance to fog 

nodes,  𝐷𝑓𝑖  

The proposed framework only allows one node in the transmission radius for sensing 

and forwarding the agricultural data. To achieve this, it determines the node score 𝑠𝑐𝑖  

with 𝑤𝑖  weighted coefficient using distributed weighted regression function 𝑋(𝑖), and 

based on the maximum score, the flag value of the nodes 𝑖 is set to either “True” or “False”, 

as given below: 

{

𝑖𝑓 𝑠𝑐𝑖  = =  𝑚𝑎𝑥
𝑓𝑖  𝑖𝑠  𝑇𝑟𝑢𝑒

𝑓𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (2) 

𝑋(𝑖) = 𝑤𝑖 . 𝑠𝑐𝑖  (3) 

The 𝑠𝑐𝑖  value for node 𝑖 is determined by exploring the residual energy 𝑒𝑖 , packets 

load  𝑃𝐿𝑖 , distance  𝐷𝑓𝑖 , as given below: 

𝑠𝑐𝑖  = 𝑒𝑖 + 1/𝑃𝐿𝑖 + 1
𝐷𝑓𝑖

⁄  (4) 

where 𝑃𝐿𝑖  defines in terms of transmitted packets 𝑁 at time interval 𝑇, as defined below. 

𝑃𝐿𝑖  = 𝑁
𝑇⁄  (5) 

3.3. Fog Systems-Based Security Maintenance 

In the proposed framework, the fog nodes performed the role of the intermediate 

system between the data originating network and cloud services. Firstly, it received all 

the data and stores it in memory for further analysis and processing. It then confirms the 

data authenticity to forward it towards the cloud system in the multi-hop discipline. Then, 

the aggregated data 𝐷𝐴  is encrypted 𝐸𝑛 using the secret key 𝑘 of the node 𝑖. Addition-

ally, it is integrated with the identity 𝐼𝐷𝑖  as given below. 

𝐸𝑛(𝑘) ( 𝐷𝐴 + 𝐼𝐷𝑖) (6) 

Upon receiving, fog nodes decrypt it to retrieve the aggregated data and the identity 

of the data-originated node. After the decryption process, the fog nodes verify the identity 

of the nodes with their stored information, and if it matches positively, then it will look 

up its routing table for the selection of the next hop among the neighboring fogs. Moreo-

ver, the cloud system 𝑐  authenticates the receiving data using digital signatures. To 

achieve this, the fog node 𝐹𝐺 first digitally signs the aggregated data 𝐷𝐴  using its pri-

vate key 𝑝𝑟  to generate a secret value 𝑆, as given below. 

𝐹𝐺𝑐  = 𝑆 + 𝐷𝐴  (7) 

where 

𝐸𝑝𝑟
(𝐷𝐴) = 𝑆 (8) 
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On the other side, the cloud system first authenticates the digital signature using the 

public key of the fog nodes and upon successful verification, it is further forwarded to the 

connected end users with the IoT system. The flow between the developed techniques for 

intelligent agricultural routing is shown in Figure 3. Initial routes are formulated using 

the greedy method and exploited for optimizing the routing process. It can detect redun-

dant nodes in the proximity of a predefined radius and accordingly, it sets the flag value 

by exploring the intelligent technique of machine learning. The flag value indicates the 

status of neighbors and whether they can transmit the data or keep them in silent mode. 

Finally, agricultural data is transmitted towards the sink node using the fog-based IoT 

system. 
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Figure 3. Developed methods for the proposed framework. 

Figure 4 explains the security algorithm for transmitting agricultural data with the 

support of fog nodes. It clarifies the fog-based trust mechanism with privacy concerns and 

reliability. Accordingly, the proposed security algorithm decreases the probabilities of 

network attacks and stabilizes the communication system. Fog nodes are utilized as a 

bridge to facilitate both the IoT and cloud systems. Firstly, fog nodes verified the incoming 

agricultural data, and upon its validation, authentication and session agreement are es-

tablished. The session agreement is valid for a particular time and needs to be refreshed 

later for further communication. In case verification is unsuccessful, then the error mes-

sage is generated towards the data originating node. Additionally, fog nodes construct 

routing paths for data forwarding by exploring the routing table. The routing information 

is updated and evaluated each time that data transmission is needed. In the end, fog and 

cloud ensure data security using cryptography-based digital signature and encryption 

techniques. Such a technique provides high-level security measures to the upper layers. 
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Figure 4. Flowchart of the proposed security algorithm. 

Moreover, the functioning of the proposed framework consists of many states, as de-

picted in Figure 5. The system will be in a specific state at a given time, and it will change 

states when a particular trigger is called. The objectives of the states are defined below. 

- Sensor’s deployment: In this state, agriculture nodes are randomly dispersed in the tar-

geted area. They have limited constraints and not enough memory, transmissions, 

and processing resources. They are not able to communicate with the sink node di-

rectly; 

- Data sense: All the deployed sensors, actuators, and IoT devices collaborate in collect-

ing the data. In addition, the data are transferred to the sink nodes through integrat-

ing fog systems. The fog nodes are explored for reducing communication delays; 

- Relay node: The data are obtained from the deployed sensors and forwarded towards 

the relay node. The roles for relay nodes are not predefined, they are chosen using 

quality-aware parameters; 

- Decision making: In this state, a distributed machine learning technique is applied us-

ing network statistics to offer the optimal results for attaining a reliable communica-

tion system; 

- Data security: In this end, security actions are performed in this state. It identifies 

faulty nodes and false messages to detect the comprised data using private values. It 

increases the reliability of remote users that are connected to cloud systems. 

 

Figure 5. States of the proposed framework. 

4. Simulations 

This section presents the simulation environment and a discussion of the various 

tests. We ran the simulations of a core i7 laptop with 64 GB RAM and 1 TB hard drive. 20 

trials of the simulations were performed. Between 150 and 750 sensor nodes were used in 
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each simulation experiment. Zigbee technologies were used in the testing, and experi-

ments were carried out in 1000 m × 1000 m area with a variety of configuration settings. 

For sensing the agricultural environment, numerous sensor categories were utilized, in-

cluding temperature, air humidity, soil moisture, and water quality. Two sink nodes, be-

tween ten and fifteen 15 fog nodes, and various relay nodes were also deployed. Sensor 

nodes collected the agriculture data and forwarded them to the relay nodes for aggrega-

tion and data routing. The fog nodes existed between sensors and sink nodes. The dura-

tion of the experiments was 2000 rounds and each round had a time interval of 20 s. The 

sensors were equipped with GPS. Communication channels were scattered with certain 

malicious nodes to test the system’s security. The results analysis was obtained based on 

the packet delivery, energy efficiency, network connectivity, and reliability metrics. All 

the network metrics were evaluated under scenarios of varying sensors and distances 

from the sink node. Table 2 contains the various parameters for simulations. 

Table 2. Simulation parameters. 

Parameter Value 

Agriculture sensors Varying 150–750 

Sensor’s type Temperature, air humidity, water quality, soil moisture 

Fog nodes 10–15 

Interface IEEE 802.15.4 

Round step 20 s 

Sink nodes 2 

Number of rounds 2000 

Initial energy 5 J 

Field dimension 1000 × 1000 

Simulations 20 

5. Results with Discussion 

We evaluated the performance of the proposed framework with other studies in 

terms of energy efficiency. The performance evaluation of the proposed framework 

against those of related works is shown in Figure 6a,b for varied IoT sensors and the dis-

tance from the sink node. It was found that the proposed framework, even in the presence 

of malfunctioning nodes, considerably improves the delivery rate of data packets by an 

average of 20% for varying nodes, and 22% for varying distances from the sink. It results 

from exploring security approaches, key generation, and mutual trust. In the proposed 

paradigm, the intelligent system achieves sustainability and effectively identifies harmful 

activities by utilizing the secret and personal data of devices. Furthermore, the sink nodes 

are more powerful than IoT sensors and verify each activity before sending it to the end 

users. Unlike the majority of the proposed research, our framework explicitly provides 

intelligent decision modules for enhancing packet delivery performance with the aid of 

machine learning and sustains the network load with improved throughput. Figure 7a,b 

demonstrate the comparison of the proposed framework in the literature and it was dis-

covered that it notably improves the network reliability by an average of 18% and 23% for 

both scenarios. This is due to the exposure of machine learning techniques to identify the 

optimal IoT nodes and intelligently interact with cloud systems. Moreover, the proposed 

framework can tackle redundant information and decreases the chances of data unavail-

ability and congestion. Additionally, the security solution decreases unwanted traffic 

across the open transmission system and stops malicious devices from sending false route 

request packets. As a result, the proposed framework lengthens the response time for crit-

ical situations with a nominal delay rate. The comparison of the proposed and existing 

solutions is revealed in Figure 8a,b in terms of varying nodes and distances from the sink. 

The statistical analysis demonstrated that the proposed framework increased energy us-

age by 15% and 24%, respectively. Energy efficiency was found to be negatively impacted 
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when the number of devices increased. On the other hand, the proposed framework pro-

vides a smart energy solution based on a distributed machine learning technique and 

smoothly selects the updated routes by utilizing the optimum solution. Additionally, the 

proposed framework effectively defends against multiple attacks and minimizes the con-

sumption of network bandwidth by employing a security algorithm. Consequently, the 

nodes’ energy is increased, which improves the performance of the entire network. By 

finding the redundant nodes in the routing table, the flag status is modified. Nodes whose 

flag value is false are therefore prohibited from participating in data routing. The perfor-

mance comparison of the proposed framework to the existing solutions for network con-

nectivity is illustrated in Figure 9a,b. Network connectivity indicates the active time at 

which nodes use particular communication links. The connectivity ratio for the proposed 

framework against various IoT devices and varied distances is remarkably enhanced by 

an average of 16% for varying distances from the sink and 20% in terms of varying nodes. 

This is due to the ability of the proposed framework to efficiently manage power distri-

bution across the sensors and investigate the machine learning principles for accomplish-

ing forwarding decisions. Moreover, the proposed framework directs the routing module 

to formulate the routes by re-evaluating the decisions whenever any disrupted interme-

diate links are discovered or frequent re-transmissions. The proposed framework success-

fully manages the transmission overheads by including the least computational cost func-

tion. 
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Figure 6. (a) Packets delivery with varying sensors and (b) Packets delivery with varying distance. 
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Figure 7. (a) Reliability with varying sensors and (b) Reliability with varying distance. 
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Figure 9. (a) Network connectivity with varying sensors and (b) Network connectivity with varying 

distance. 

6. Conclusions 

With an emphasis on green energy and remote monitoring, smart technologies and 

agricultural systems have grown significantly in recent years. It controls the plants, soil 

characteristics, water pressure, and weather-related information, which benefits farmers 

and increases production. However, limited solutions have been proposed to enhance 

production in precision agriculture while reducing latency and information disturbance. 

Furthermore, protecting agricultural data while utilizing the insecure Internet is another 

significant research challenge. In this study, we presented a framework for providing a 

farmer communication system to enhance timely delivery through the cooperation of fog 

systems. This system also incorporates redundant information detection, which reduces 

network bandwidth inefficiencies. Additionally, the proposed framework employs secu-

rity methods to counter privacy attacks on sensing data. The performance results showed 

the good outcomes of the proposed framework with maximum energy efficiency and de-

livery ratio. Furthermore, its performance has proven the improved processing usage in 

the existence of malicious devices. In the future, we intend to cope with the proposed 

framework’s scalability and load-balancing issues with the support of a multi-cloud ar-

chitecture. Moreover, we would like to integrate security to maintain cloud integrity from 

the point of users’ perspective. 
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